
Hybrid Sensor Fusion Framework for Perception in
Autonomous Vehicles

Babak Shahian Jahromi
University of Illinois at Chicago

bshahi2@uic.com

Theja Tulabandhula
University of Illinois at Chicago

theja@uic.edu

Sabri Cetin
University of Illinois at Chicago

scetin@uic.com

Abstract

There are many sensor fusion frameworks proposed in the literature using dif-
ferent sensors and methods configurations. Most focus has been on improving
the accuracy performance; the implementation feasibility of these frameworks in
an autonomous vehicle is less explored. Some fusion architectures can perform
very well in lab conditions using powerful computational resources; however, in
real-world applications, they cannot be implemented in an embedded edge com-
puter due to their high computational need. We propose a new hybrid multi-sensor
fusion pipeline configuration that performs environment perception for autonomous
vehicles such as road segmentation, obstacle detection, and tracking. This fusion
framework uses an improved encoder-decoder based Fully Convolutional Neural
Networks (FCN) and a traditional Extended Kalman Filter (EKF) nonlinear state
estimator methods. It also uses a configuration of camera, lidar, and radar sensors
that are best suited for each fusion method. The goal of this hybrid framework is to
provide a relatively lightweight, modular, and robust fusion system solution. It uses
modified algorithms that improve environment perception accuracy and real-time
efficiency compared to benchmark models that can be used in an autonomous
vehicle embedded computer. Our fusion algorithm shows better performance in
various environment scenarios compared to baseline techniques. Moreover, the
algorithm is implemented in a vehicle and tested using actual sensor data collected
from a vehicle, performing real-time environment perception.

1 Introduction

There is numerous research on the environment perception for autonomous vehicles, including the
sensors used in an AV, sensor data processing, and various fusion algorithms. The sensors can be
categorized into three main categories: (1) camera, (2) lidar, and (3) radar. Also, the fusion algorithms
can be categorized into two main categories: (1) sensor fusion using state estimators, i.e., Bayesian
filters (BF), and (2) machine learning-based methods, i.e., deep neural networks (DNN). Literature
focus has been often on improving the algorithm accuracy performance; the implementation feasibility
of these algorithms in an autonomous vehicle, however, has been less explored. The need for an
efficient, lightweight, modular, and robust pipeline is essential. Therefore, a sensor fusion method
configuration that balances a trade-off between fusion model complexity and real-world real-time
applicability while improving the environment perception accuracy is fundamental.

In this research paper, we propose a hybrid sensor fusion framework configuration for autonomous
driving. In addition to accuracy improvement, this modular framework takes into account and

Machine Learning for Autonomous Driving Workshop at the 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019), Vancouver, Canada.

combines the strengths of nonlinear state estimators, i.e., Extended Kalman Filter technique with the
strength of deep learning algorithms, i.e., Fully Convolutional Network, based on the sensor type
and configuration. This hybrid sensor fusion technique is used for understanding the environment
around the autonomous vehicle to provide rich information on the safe driveable road region as well
as detecting and tracking the objects on the road. This method was tested via an embedded in-vehicle
computer, and the results were compared to ground truth information.

2 Hybrid sensor fusion algorithm overview

The three main perception sensors used in autonomous vehicles have their strengths and weaknesses;
therefore, the information from them needs to be combined (fused) to make the best sense of the
environment. Here, we propose and implement a hybrid sensor fusion algorithm framework to this
end. The hybrid sensor fusion algorithm consists of two parts that run in parallel, as shown in fig.
1. In each part, a set configuration of sensors and a fusion method is used that is best suited for the
fusion task at hand.

Figure 1: Multi-sensor fusion algorithm pipeline.

The first part deals with high-resolution tasks of object classification, localization, and semantic road
segmentation by using the camera (vision) and lidar sensors. The camera’s raw video frames and the
lidar’s depth channel are combined before being sent to our proposed Fully Convolutional Networks
(FCNx) in charge of the object classification and road segmentation tasks. The combination of
camera and lidar with FCNx architecture gives us the best sensor-method combination for performing
classification and segmentation. In this paper, we prioritize real-time performance and accuracy. We
perform segmentation for two classes: the free space (driveable area) of the road and not driveable
area of the road for our autonomous vehicle. We compare our free navigation space detection
architecture with baseline benchmarks. For automated driving, knowledge of driveable space, and
obstacle classes on the road is essential for path planning and decision making.

The second part deals with the task of detecting objects and tracking their states by using lidar and
radar sensors. The lidar point cloud data (PCD) and radar signals are processed and fused at the
object level. The lidar and radar data processing will result in clusters of obstacles on the road within
the region of interest (ROI) with their states. The fusion of processed sensor data at the object level
is referred to as late fusion. The resulting late fused lidar and radar data is sent to a nonlinear state
estimation method to best combine the noisy measured states of each sensor. Since the motion of
obstacles like cars and sensor measurement models can be nonlinear; we use a classic Extended
Kalman Filter (EKF). Knowing and tracking the states of the obstacles on the road helps to predict and
account for their behavior in the AV path planning and decision making stacks. Finally, we overlay
each fusion output and visualize them on the car monitor. The tracking using EKF is implemented so

2

we can show and test the complete implementation of this framework in real-world scenarios with
actual sensor data.

3 Object classification and road segmentation using deep learning

For road semantic segmentation, we use camera images as well as depth information from the lidar.
We combine these raw data at the depth channel, which results in an RGBD image with a depth
channel of size four. We then send this information to our proposed Fully Convolutional Network
(FCNx) architecture. FCNx is based on an encoder-decoder architecture and consists of two parts:
an encoder to extract the features from the RGBD image at various levels from high level to low
level. Also, a decoder that will upsample the features, so we get detailed segmented road images back
showing the free navigation space. The model is trained and tested using NVIDIA GPUs. Finally,
the model performance is evaluated by comparing its predictions with the ground truth labels and to
segmentation architecture benchmarks.

3.1 Camera-lidar raw data fusion

The camera and lidar sensors provide the input data for the FCNx. The camera provides 2-dimensional
(2D) color images of three RGB channels. The lidar provides a high-resolution depth map in addition
to the point cloud data. We combine the unprocessed raw data of lidar and camera (early fusion).
The resulting RGBD image will have four channels. The RGBD image contains the 2D appearance
features of the camera image with 3D depth features of lidar to give us a rich illumination-invariant
spatial image. This image is fed to the FCNx to extract road features for semantic segmentation and a
CNN for object detection and localization depending on the application.

3.2 Proposed fully convolutional network (FCNx) architecture

The architecture consists of two main parts: an encoder and a decoder. First, we have the encoder; it
is based on the VGG16 architecture [1], with its fully connected layers replaced with convolutional
layers. The purpose of the encoder is to extract features and spatial information from our four-channel
RGBD input image. It uses a series of convolutional layers to extract features and max-pooling layers
to reduce the size of the feature maps. Second, we have a decoder, which is based on the FCN8
architecture [2]. Its purpose is to rebuild the prediction of pixel classes back to the original image size
while maintaining low-level and high-level information integrity. It uses transposed convolutional
layers to upsample the output of the last convolutional layer of the encoder [3]. Also, it uses skip
convolutional layers to combine the finer low-level features from encoder layers with the coarser
high-level features of transposed convolutional (upsampled) layers.

In our proposed network, which builds on the above shown in fig. 2, we combine the encoder output
from layer four with the upsampled layer seven. This combination is an element-wise addition.
This combined feature map is then added to the output of the third layer skip connection. In the
skip connection of the layer three output, we utilize a second convolutional layer to further extract
features from layer three output. The addition of this convolutional layer adds some features that
would be extracted in layer four. Including some basic layer four level feature maps will help the
layer three skip connection to represent a combined feature map of layer three and layer four. This
combined feature map is then added to the upsampled layer nine, which itself represents a combined
feature map of layer seven and layer four. This addition is shown to give a better accuracy and lower
Cross-Entropy loss compared to the base VGG16-FCN8 architecture. The better performance can
be explained by the fact that, having some similar layer four feature maps, can help better align the
extracted features when performing the last addition. We will refer to our proposed architecture as
FCNx. The purpose of the FCNx applied to camera and lidar fused raw data is to segment the road
image into driveable free space area and non-driveable area. The output can be further processed and
sent through a plug and play detector network (YOLO [4, 5, 6], SSD [7]) for object detection and
localization depending on the situation.

3.3 Network experiments procedure

For our FCNx architecture, we use a combined dataset for training. The dataset is a combination
of UC Berkeley DeepDrive (BDD) dataset [8], University of Toronto KITTI dataset [9] and a self-
generated dataset generated from our sensors installed in our test vehicle summing up to more than
3000 images. Our sensor data was acquired from a ZED camera and an Ouster lidar mounted on
our test vehicle capturing data from streets of the city of Chicago. The BDD and KITTI dataset are

3

Figure 2: Overview of the object detection and road segmentation architecture via a Fully Con-
volutional Neural Network. The tiles and colors indicate different layers of the FCNx and their
type respectively. Encoder consists of: convolution (teal) and max pooling (green) layers. Decoder
consists of: skip convolution (purple) and transposed convolution (yellow). The size and number of
feature maps are shown at the top and bottom of each layer.

annotated and labeled at object and pixel levels. For our dataset, we performed the labeling manually.
We use these annotations as the ground truth labels. For our manual annotation, we mark the road
with the color yellow. We trained the network by using the following tunable hyper-parameters. The
parameter values are found based on trial and error with different values and combinations that give
the best performance. Some of the hyper-parameters we picked are as follows: learning rate of 2e-4,
batch size of 5 and the keep probability of 0.5. We train the network using an NVIDIA RTX2080 Ti
GPU; then upload the model to an embedded NVIDIA Xavier computer in our vehicle for real-time
inference. From the obtained results of our network we calculate the Cross-Entropy (C.E.) loss.
This metric gives a measure of how well our segmentation network is performing. We define our
performance goals as C.E. loss, using validation and strive to improve upon another well performing
FCN (FCN8). Another important factor for automated driving is performing inference in real-time.

There are many metrics to measure the performance of our segmentation network like mean Intersect
over Union (mIoU) and the Cross-Entropy (C.E.) loss. The most common loss function is a pixel-wise
Cross-Entropy. In this loss, we compare each pixels predicted class to the ground truth image pixel
labels. We repeat this process for all pixels in each image and take the average. In our segmentation
we have two classes (i.e. binary), road and not-a-road. The Cross-Entropy loss is defined as:

C.E.Loss = −(p. log(p̂) + (1− p). log(1− p̂)) (1)

where the probability of pixel ground-truth values ytrue for the road defined as P (Ytrue = road) = p
and for not-a-road defined as P (Ytrue = notroad) = 1− p. The predicted values ypred for road and
not-a-road are defined as P (Ypred = road) = p̂ and P (Ypred = notroad) = 1− p̂.

4 Obstacle detection and tracking using Kalman filtering

In this section, we use the radar and lidar sensors to detect obstacles and measure their states by
processing each sensor data i.e., the radar beat signal and lidar point cloud individually. We then
perform a late data fusion or an object-level fusion to add the processed data from the radar and lidar.
Then, using a non-linear Kalman Filter method, we take those noisy sensor measurements to estimate
and track obstacle states with a higher accuracy than each sensor.

4.1 Radar beat signal data processing

The radar sensor can detect obstacles and their states in a four step process. The first step is to process
the noisy digitized mixed or beat signal we receive from the radar. The beat signal is sent through an
internal radar ADC to get converted to a digital signal. In the second step, we use a one-dimensional
(1D) Fast Fourier Transform (FFT), also known as 1st stage or Range FFT, to transform the signal
from the time domain to frequency domain, and separate all its frequency components. The output of

4

the FFT is a frequency response represented by signal power or amplitude in dBm unit versus beat
frequency in MHz unit. Each peak in the frequency response represents a detected target. The range
FFT output gives us the beat frequency, amplitude, phase, and range (from the equations above) of
the targets. To measure the velocity (or Doppler velocity) of the targets, we need to find the Doppler
frequency shift, which is the rate of change of phase across radar chirps. The target phase changes
from one chirp to another. So, after acquiring the range FFT on the radar chirps, in the third step, we
run another FFT (Doppler FFT) to measure the rate of change of phase i.e. the Doppler frequency
shift. The output of the Doppler FFT is a 3D map represented by signal power, range, and Doppler
velocity. This 3D map is also referred to as Range Doppler Map (RDM). RDM gives us an overview
of the targets range and velocity. RDM can be quite noisy since reflected radar signals received can
be from unwanted sources like the ground, and buildings, which can create false alarms in our object
detection task. In the fourth and final step, these noises or clutters are filtered out to avoid such false
positives. One filtering method most used in automotive applications is Cell Averaging Constant
False Alarm Rate (CA-CFAR) [10] which is a dynamic thresholding method i.e. it varies thresholds
based on the local noise level of the signal. Finally, we have radar CFAR detection with range and
Doppler velocity information but object detection and tracking in real-time, is a computationally
expensive process. Therefore, we cluster the radar detection that belongs to the same obstacle together
to increase the performance of our pipeline. We use a Euclidean distance-based clustering algorithm.
In this method, all the radar detection points that are within the size of the target are considered one
cluster. The cluster is assigned with a range and velocity at the center equal to the mean of the ranges
and velocities of all the cluster detection points.
4.2 Lidar point cloud data processing

Lidar gives us rich information with point clouds (which include position coordinates x, y, z and
intensity i) as well as a depth map. The first step to process the lidar point cloud data (PCD) involves
downsampling and filtering the data. The raw lidar point cloud is high resolution and covers a long
distance (for example a 64-lens laser acquires more than 1 million points per second). Dealing
with such a large number of points is very computationally expensive and will affect the real-time
performance of our pipeline. Therefore, we downsample and filter. We downsample using a voxel
grid; we define a cubic voxel within the PCD and only assign one point cloud per voxel. After
downsampling, we use a region of interest (ROI) box to filter any PCD outside of that box that is
not of our interest (i.e. points from non-road objects like buildings). In the next step we segment the
filtered PCD into obstacles and the road. Knowledge of the road and objects on the road are the two
segments most important for the automated driving task. The PCD segmentation happens at the point
level; hence, processing would require a lot of resources and slow down the pipeline. In order to
improve the performance of our pipeline, similar to the radar data, we cluster the obstacle segments
based on their proximity to neighboring points (Euclidean Clustering) and assign each cluster with a
new position coordinates (x, y, z) which is the mean of all the point clouds within that cluster. Finally,
we can define bounding boxes of the size of clusters and visualize the obstacles with the bounding
boxes. For segmenting the PCD into road and obstacles, we need to separate the road plane from the
obstacle plane. For this, we use the Random Sample Consensus (RANSAC) method [11].
4.3 Extended Kalman filtering

In the first part of our hybrid framework, we segmented the road scenes at the pixel level into free
navigation space for the autonomous vehicle (AV). We also classified the obstacles present that the
AV should avoid. In this section, we track those objects, predicting and maintaining their states
(2-dimensional positions and velocities) over time. State of the objects being tracked is defined below.

x̂ =

Px

Py

Vx
Vy

 (2)

where Px and Py are the object’s positions in x and y-direction; Vx and Vy are the object’s velocities
in x and y-direction. For state tracking, we use Kalman filtering (KF) state estimation method [12].
Our objective is to estimate states that are more accurate and reliable than raw measurements from
individual sensors (Lidar or Radar). The motion model for a dynamic system is defined as follows:

x̂k+1 = F . x̂k +B . ûk + ξ̂ (3)
where x̂k+1 is the predicted state of the tracked object, F is the system or state transition matrix, x̂ is
the state vector, B is the control input matrix, û is the input vector, and ξ is the process or motion

5

model noise. We assume a linear motion model in which the object travels at a constant velocity for
our test, but in reality, the object may not maintain a constant velocity. In object tracking, we do not
know the exact movement of the tracked object; hence, we will not be able to model the dynamics of
the object so we assume no inputs i.e. B.û = 0. Instead, we subsume the motion uncertainty into
the process noise ξ. We also observe the system by a measurement or observation model that maps
the state of the object into the measurement space of our sensors (lidar or radar). The measurement
model is as follows:

ẑk+1 = H . x̂k+1 + ε̂ (4)
where ẑk+1 is the sensor measurement vector, H is the measurement function, x̂ is the state vector, ε̂
is the sensor measurement noise. A KF involves three steps: initialization, prediction, and update. For
the predict step, we use the objects current state (2D-position and 2D-velocity) to estimate the state at
the next time step using eqn. 3. Substituting the state transition matrix F and the measurement noise
ξ̂ definitions into eqn. 3; the motion model becomes:Pxk+1

Pyk+1

Vxk+1

Vyk+1

 =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 .
Pxk

Pyk

Vxk

Vyk

 +

ξpxk

ξpyk

ξvxk

ξvyk

 (5)

In cases where the object did not maintain the same velocity, we represent the motion uncertainty in
the predicted covariance equation. Predicted covariance is calculated from:

Pk+1 = F . Pk . F
T +Q (6)

where Pk+1 is the uncertainty associated with our predictions. In the update step, we calculate the
measurement residual by comparing the measured sensor readings from the actual perfect world
sensor readings:

ŷk+1 = ẑk+1 −H . x̂k+1 (7)
also, we calculate the residual covariance from:

ŝk+1 = H . Pk+1 . H
T +R (8)

Moreover, we have K, the Kalman gain, which combines the uncertainty of our predicted state Pk+1

with the uncertainty of sensor measurements Sk+1.

K = Pk+1 . H
T . Sk+1

−1 (9)
At last, we calculate the updated state estimate as well as its covariance:

x̂k+1 = x̂k +K . ŷ (10)
Pk+1 = (I −K . H) . Pk (11)

The standard Kalman filter can only be used when our models are linear (motion model or the
measurement model.) with the assumption that our data has a Gaussian distribution. However, in a
system, the motion model or measurement model or both can be nonlinear; so, the standard KF may
not converge, and its equations are not valid. In this case, to work with nonlinear models, we use the
classic Extended Kalman filter (EKF). EKF fixes this problem by linearizing the nonlinear functions
(state transition or measurement functions) around the mean of the current state estimate using Taylor
series expansion and taking the Jacobian of our functions [13]. In EKF, the system equations are:

x̂k+1 = f(x̂k, ûk) + ξ̂ (12)
ẑk+1 = h(x̂k+1) + ε̂ (13)

where f(x̂k, ûk) and h(x̂k+1) are the nonlinear state transition and measurement functions respec-
tively. We linearize these functions by finding their Jacobians, so the linearized system becomes:

x̂k+1 = F . x̂k + ξ̂ (14)
ẑk+1 = H . x̂k+1 + ε̂ (15)

where F and H are approximated as: F = ∂f
∂x and H = ∂h

∂x . For our tracking problem, we take
advantage of two sensor measurements: lidar and radar. the ground truth (the actual path of the
object) is measured manually and used for calculating root mean square error (RMSE) from eqn. 16
to measure our object tracking algorithm performance.

R.M.S.E. =

√√√√ 1

n
.

n∑
i=1

||x̂estimate − x̂groundtruth||2
2 (16)

6

5 Experimental results

The results of each part of our hybrid sensor fusion framework are presented in this section. For each
part, we measure their performance using an evaluation metric appropriate for that method; for EKF
fusion and object tracking, we use the root mean square error (RMSE) metric, and for FCN road
segmentation we use the Cross-Entropy (CE) loss metric. First, we show the results of our FCNx
algorithm in fig. 3. In all images shown, by visual examination we can see that our model (row three)
performs the road segmentation better and closer to the ground truth (row two) than the benchmark
FCN8 (row four). The FCN8 segmentation was not as smooth as our model at segmenting road border
lines. For example, it classified parts of the right-side parking area and right-side sidewalk as the
road in the row four columns three and four images, respectively. It also showed some difficulty with
False Positives (FP). For example, it falsely classified parts of the left-side grass area and parts of the
bicycle path on the right side as the road in the row four column one and two images, respectively.

Figure 3: Results of semantic segmentation of the road. First row: some examples of our input
images in various situations. From left to right: Highway clear weather no traffic, highway shadow
mix with traffic, urban dim with cars parked, and urban shadow mix with cars parked. Second row:
the corresponding road ground truth annotations in yellow overlaid over the original image. Third
row: road segmentation by our model FCNx. Row four: road segmentation by UC Berkeley FCN8.

Also analytically, we compare our proposed network performance with FCN8 network performance
by measuring the Cross-Entropy loss and inference time metrics. Under the same conditions, i.e. the
same training input data and hyperparameter choices; our model FCNx reduces the CE loss by 3.2 %
compared to FCN8 model while maintaining similar inference time.

Table 1: Comparison of our architecture performance with FCN8 network.

Method Cross Entropy Loss % Inference Time (ms)
FCN8 6.8 ∼180

FCNx (Our model) 3.6 ∼185

Results of the Extended Kalman filter estimation for a real-world example is shown in fig. 4. The red
line shows the actual path of the vehicle we are tracking and the blue and yellow points are the lidar
and radar measurements, respectively. The orange points are the EKF fused output. The EKF fused
predictions are closer to the actual path than individual lidar and radar measurements.

We evaluate the performance of our Extended Kalman filter predictions by measuring the root mean
square error. RMSE measures how well our prediction values fit the actual path of the target vehicle.
In our experiment, we achieve RMSE of 0.065 and 0.061 for the x and y-position of our tracked
target vehicle, which shows an improvement over individual lidar and radar sensors.

7

Figure 4: Results of EKF state predictions of a target vehicle from sensors on an ego vehicle.

6 Conclusion

The results of each fusion method in our hybrid sensor fusion algorithm gives our AV a detailed map
of the environment. Having a clear understanding of the surrounding environment can result in an
optimal decision making, and generating optimal control inputs to the actuators (accelerator, brakes,
steering) of our AV. In this paper, a new sensor fusion framework configuration is proposed and
successfully demonstrated real-time environment perception in a vehicle. Appropriate combinations
of Vision + Lidar and Vision + Radar sensor fusion is successfully demonstrated, using a hybrid
pipeline: deep learning and EKF. The algorithm uses our proposed FCNx deep learning framework
and is implemented in edge-computing device in real-time. For future work, cloud computing and
edge computing coordination would be the next step to further enhance this framework.

References
[1] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

[2] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3431–3440, 2015.

[3] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for
semantic segmentation. The IEEE International Conference on Computer Vision (ICCV),
December 2015.

8

[4] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 779–788, 2016.

[5] Mohammad Javad Shafiee, Brendan Chywl, Francis Li, and Alexander Wong. Fast yolo: a fast
you only look once system for real-time embedded object detection in video. arXiv preprint
arXiv:1709.05943, 2017.

[6] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[7] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C Berg. Ssd: Single shot multibox detector. European conference on computer
vision, pages 21–37, 2016.

[8] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and
Trevor Darrell. Bdd100k: A diverse driving video database with scalable annotation tooling.
arXiv preprint arXiv:1805.04687, 2018.

[9] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

[10] Chr Kabakchiev, Lyubka Doukovska, and Ivan Garvanov. Cell averaging constant false alarm
rate detector with hough transform in randomly arriving impulse interference. Cybernetics and
Information Technologies, 6(1):83–89, 2006.

[11] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model fit-
ting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381–
395, June 1981.

[12] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

[13] Lennart Ljung. Asymptotic behavior of the extended kalman filter as a parameter estimator for
linear systems. IEEE Transactions on Automatic Control, 24(1):36–50, 1979.

9

	Introduction
	Object classification and road segmentation using deep learning
	Camera-lidar raw data fusion
	Proposed fully convolutional network (FCNx) architecture
	Network experiments procedure

	Obstacle detection and tracking using Kalman filtering
	Lidar point cloud data processing
	Extended Kalman filtering

